资源名称:PyTorch模型训练最新实用教程 PDF
本教程以实际应用、工程开发为目的,着重介绍模型训练过程中遇到的实际问题和方法。如上图所示,在机器学习模型开发中,主要涉及三大部分,分别是数据、模型和损失函数及优化器。本文也按顺序的依次介绍数据、模型和损失函数及优化器,从而给大家带来清晰的机器学习结构。
本教程内容主要为在 PyTorch 中训练一个模型所可能涉及到的方法及函数,并且对 PyTorch 提供的数据增强方法(22 个)、权值初始化方法(10 个)、损失函数(17 个)、优化器(6 个)及 tensorboardX 的方法(13 个)进行了详细介绍。
本教程分为四章,结构与机器学习三大部分一致:
第一章,介绍数据的划分,预处理,数据增强;
第二章,介绍模型的定义,权值初始化,模型 Finetune;
第三章,介绍各种损失函数及优化器;
第四章,介绍可视化工具,用于监控数据、模型权及损失函数的变化。
资源截图:
常见问题FAQ
- 免费下载或者VIP会员专享资源能否直接商用?
- 本站所有资源版权均属于原作者所有,这里所提供资源均只能用于参考学习用,请勿直接商用。若由于商用引起版权纠纷,一切责任均由使用者承担。更多说明请参考 VIP介绍。
- 提示下载完但解压或打开不了?
- 找不到素材资源介绍文章里的示例图片?
- 站壳网